Exercise 6.2.20 If $\mathbf{P}_n = \text{span} \{ p_1(x), p_2(x), \dots, p_k(x) \}$ and *a* is in \mathbb{R} , show that $p_i(a) \neq 0$ for some *i*.

Exercise 6.2.21 Let U be a subspace of a vector space V.

- a. If $a\mathbf{u}$ is in U where $a \neq 0$, show that \mathbf{u} is in U.
- b. If **u** and $\mathbf{u} + \mathbf{v}$ are in U, show that **v** is in U.

Exercise 6.2.22 Let *U* be a nonempty subset of a vector space *V*. Show that *U* is a subspace of *V* if and only if $\mathbf{u}_1 + a\mathbf{u}_2$ lies in *U* for all \mathbf{u}_1 and \mathbf{u}_2 in *U* and all *a* in \mathbb{R} .

Exercise 6.2.23 Let $U = \{p(x) \text{ in } \mathbf{P} \mid p(3) = 0\}$ be the set in Example 6.2.4. Use the factor theorem (see Section 6.5) to show that *U* consists of multiples of x - 3; that is, show that $U = \{(x - 3)q(x) \mid q(x) \in \mathbf{P}\}$. Use this to show that *U* is a subspace of \mathbf{P} .

Exercise 6.2.24 Let A_1, A_2, \ldots, A_m denote $n \times n$ matrices. If $\mathbf{0} \neq \mathbf{y} \in \mathbb{R}^n$ and $A_1\mathbf{y} = A_2\mathbf{y} = \cdots = A_m\mathbf{y} = \mathbf{0}$, show that $\{A_1, A_2, \ldots, A_m\}$ cannot span \mathbf{M}_{nn} .

Exercise 6.2.25 Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ and $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ be sets of vectors in a vector space, and let

$$X = \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_n \end{bmatrix} Y = \begin{bmatrix} \mathbf{u}_1 \\ \vdots \\ \mathbf{u}_n \end{bmatrix}$$

as in Exercise 6.1.18.

- a. Show that span $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\} \subseteq$ span $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ if and only if AY = X for some $n \times n$ matrix A.
- b. If X = AY where A is invertible, show that span $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\} = \text{span} \{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$.

Exercise 6.2.26 If *U* and *W* are subspaces of a vector space *V*, let $U \cup W = \{\mathbf{v} \mid \mathbf{v} \text{ is in } U \text{ or } \mathbf{v} \text{ is in } W\}$. Show that $U \cup W$ is a subspace if and only if $U \subseteq W$ or $W \subseteq U$.

Exercise 6.2.27 Show that **P** cannot be spanned by a finite set of polynomials.

6.3 Linear Independence and Dimension

Definition 6.4 Linear Independence and Dependence

As in \mathbb{R}^n , a set of vectors $\{v_1, v_2, ..., v_n\}$ in a vector space *V* is called **linearly independent** (or simply **independent**) if it satisfies the following condition:

If
$$s_1 v_1 + s_2 v_2 + \dots + s_n v_n = 0$$
, then $s_1 = s_2 = \dots = s_n = 0$.

A set of vectors that is not linearly independent is said to be **linearly dependent** (or simply **dependent**).

The trivial linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ is the one with every coefficient zero:

$$0\mathbf{v}_1 + 0\mathbf{v}_2 + \cdots + 0\mathbf{v}_n$$

This is obviously one way of expressing **0** as a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$, and they are linearly independent when it is the *only* way.

Example 6.3.1

Show that $\{1+x, 3x+x^2, 2+x-x^2\}$ is independent in **P**₂.

<u>Solution.</u> Suppose a linear combination of these polynomials vanishes.

$$s_1(1+x) + s_2(3x+x^2) + s_3(2+x-x^2) = 0$$

Equating the coefficients of 1, x, and x^2 gives a set of linear equations.

$$s_1 + + 2s_3 = 0$$

$$s_1 + 3s_2 + s_3 = 0$$

$$s_2 - s_3 = 0$$

The only solution is $s_1 = s_2 = s_3 = 0$.

Example 6.3.2

Show that $\{\sin x, \cos x\}$ is independent in the vector space $\mathbf{F}[0, 2\pi]$ of functions defined on the interval $[0, 2\pi]$.

<u>Solution.</u> Suppose that a linear combination of these functions vanishes.

$$s_1(\sin x) + s_2(\cos x) = 0$$

This must hold for *all* values of x in $[0, 2\pi]$ (by the definition of equality in $\mathbf{F}[0, 2\pi]$). Taking x = 0 yields $s_2 = 0$ (because $\sin 0 = 0$ and $\cos 0 = 1$). Similarly, $s_1 = 0$ follows from taking $x = \frac{\pi}{2}$ (because $\sin \frac{\pi}{2} = 1$ and $\cos \frac{\pi}{2} = 0$).

Example 6.3.3

Suppose that $\{\mathbf{u}, \mathbf{v}\}$ is an independent set in a vector space *V*. Show that $\{\mathbf{u}+2\mathbf{v}, \mathbf{u}-3\mathbf{v}\}$ is also independent.

<u>Solution</u>. Suppose a linear combination of $\mathbf{u} + 2\mathbf{v}$ and $\mathbf{u} - 3\mathbf{v}$ vanishes:

$$s(\mathbf{u}+2\mathbf{v})+t(\mathbf{u}-3\mathbf{v})=\mathbf{0}$$

We must deduce that s = t = 0. Collecting terms involving **u** and **v** gives

$$(s+t)\mathbf{u} + (2s-3t)\mathbf{v} = \mathbf{0}$$

Because {**u**, **v**} is independent, this yields linear equations s + t = 0 and 2s - 3t = 0. The only solution is s = t = 0.

Example 6.3.4

Show that any set of polynomials of distinct degrees is independent.

<u>Solution.</u> Let $p_1, p_2, ..., p_m$ be polynomials where deg $(p_i) = d_i$. By relabelling if necessary, we may assume that $d_1 > d_2 > \cdots > d_m$. Suppose that a linear combination vanishes:

$$t_1p_1+t_2p_2+\cdots+t_mp_m=0$$

where each t_i is in \mathbb{R} . As deg $(p_1) = d_1$, let ax^{d_1} be the term in p_1 of highest degree, where $a \neq 0$. Since $d_1 > d_2 > \cdots > d_m$, it follows that $t_1 ax^{d_1}$ is the only term of degree d_1 in the linear combination $t_1p_1 + t_2p_2 + \cdots + t_mp_m = 0$. This means that $t_1ax^{d_1} = 0$, whence $t_1a = 0$, hence $t_1 = 0$ (because $a \neq 0$). But then $t_2p_2 + \cdots + t_mp_m = 0$ so we can repeat the argument to show that $t_2 = 0$. Continuing, we obtain $t_i = 0$ for each *i*, as desired.

Example 6.3.5

Suppose that *A* is an $n \times n$ matrix such that $A^k = 0$ but $A^{k-1} \neq 0$. Show that $B = \{I, A, A^2, \dots, A^{k-1}\}$ is independent in \mathbf{M}_{nn} .

Solution. Suppose $r_0I + r_1A + r_2A^2 + \dots + r_{k-1}A^{k-1} = 0$. Multiply by A^{k-1} :

$$r_0 A^{k-1} + r_1 A^k + r_2 A^{k+1} + \dots + r_{k-1} A^{2k-2} = 0$$

Since $A^k = 0$, all the higher powers are zero, so this becomes $r_0A^{k-1} = 0$. But $A^{k-1} \neq 0$, so $r_0 = 0$, and we have $r_1A^1 + r_2A^2 + \cdots + r_{k-1}A^{k-1} = 0$. Now multiply by A^{k-2} to conclude that $r_1 = 0$. Continuing, we obtain $r_i = 0$ for each *i*, so *B* is independent.

The next example collects several useful properties of independence for reference.

Example 6.3.6

Let V denote a vector space.

- 1. If $\mathbf{v} \neq \mathbf{0}$ in *V*, then $\{\mathbf{v}\}$ is an independent set.
- 2. No independent set of vectors in V can contain the zero vector.

Solution.

- 1. Let $t\mathbf{v} = \mathbf{0}$, t in \mathbb{R} . If $t \neq 0$, then $\mathbf{v} = 1\mathbf{v} = \frac{1}{t}(t\mathbf{v}) = \frac{1}{t}\mathbf{0} = \mathbf{0}$, contrary to assumption. So t = 0.
- If {v₁, v₂, ..., v_k} is independent and (say) v₂ = 0, then 0v₁ + 1v₂ + ... + 0v_k = 0 is a nontrivial linear combination that vanishes, contrary to the independence of {v₁, v₂, ..., v_k}.

A set of vectors is independent if $\mathbf{0}$ is a linear combination in a unique way. The following theorem shows that *every* linear combination of these vectors has uniquely determined coefficients, and so extends Theorem 5.2.1.

Theorem 6.3.1

Let $\{v_1, v_2, ..., v_n\}$ be a linearly independent set of vectors in a vector space *V*. If a vector **v** has two (ostensibly different) representations

 $\mathbf{v} = s_1 \mathbf{v}_1 + s_2 \mathbf{v}_2 + \dots + s_n \mathbf{v}_n$ $\mathbf{v} = t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2 + \dots + t_n \mathbf{v}_n$

as linear combinations of these vectors, then $s_1 = t_1$, $s_2 = t_2$, ..., $s_n = t_n$. In other words, every vector in *V* can be written in a unique way as a linear combination of the \mathbf{v}_i .

<u>Proof.</u> Subtracting the equations given in the theorem gives

 $(s_1-t_1)\mathbf{v}_1+(s_2-t_2)\mathbf{v}_2+\cdots+(s_n-t_n)\mathbf{v}_n=\mathbf{0}$

The independence of { $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ } gives $s_i - t_i = 0$ for each *i*, as required.

The following theorem extends (and proves) Theorem 5.2.4, and is one of the most useful results in linear algebra.

Theorem 6.3.2: Fundamental Theorem

Suppose a vector space *V* can be spanned by *n* vectors. If any set of *m* vectors in *V* is linearly independent, then $m \le n$.

Proof. Let $V = \text{span} \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$, and suppose that $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m\}$ is an independent set in *V*. Then $\mathbf{u}_1 = a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \dots + a_n\mathbf{v}_n$ where each a_i is in \mathbb{R} . As $\mathbf{u}_1 \neq \mathbf{0}$ (Example 6.3.6), not all of the a_i are zero, say $a_1 \neq 0$ (after relabelling the \mathbf{v}_i). Then $V = \text{span} \{\mathbf{u}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_n\}$ as the reader can verify. Hence, write $\mathbf{u}_2 = b_1\mathbf{u}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 + \dots + c_n\mathbf{v}_n$. Then some $c_i \neq 0$ because $\{\mathbf{u}_1, \mathbf{u}_2\}$ is independent; so, as before, $V = \text{span} \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{v}_3, \dots, \mathbf{v}_n\}$, again after possible relabelling of the \mathbf{v}_i . If m > n, this procedure continues until all the vectors \mathbf{v}_i are replaced by the vectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$. In particular, $V = \text{span} \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$. But then \mathbf{u}_{n+1} is a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ contrary to the independence of the \mathbf{u}_i . Hence, the assumption m > n cannot be valid, so $m \leq n$ and the theorem is proved.

If $V = \text{span} \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$, and if $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_m\}$ is an independent set in *V*, the above proof shows not only that $m \le n$ but also that *m* of the (spanning) vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ can be replaced by the (independent) vectors $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_m$ and the resulting set will still span *V*. In this form the result is called the **Steinitz Exchange Lemma**.

Definition 6.5 Basis of a Vector Space

As in \mathbb{R}^n , a set $\{\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n\}$ of vectors in a vector space V is called a **basis** of V if it satisfies the following two conditions:

1. $\{\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n\}$ is linearly independent

2. $V = \text{span} \{ \mathbf{e}_1, \, \mathbf{e}_2, \, \dots, \, \mathbf{e}_n \}$

Thus if a set of vectors $\{\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n\}$ is a basis, then *every* vector in V can be written as a linear combination of these vectors in a *unique* way (Theorem 6.3.1). But even more is true: Any two (finite) bases of V contain the same number of vectors.

Theorem 6.3.3: Invariance Theorem

Let $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ and $\{\mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_m\}$ be two bases of a vector space *V*. Then n = m.

Proof. Because $V = \text{span} \{ \mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n \}$ and $\{ \mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_m \}$ is independent, it follows from Theorem 6.3.2 that $m \le n$. Similarly $n \le m$, so n = m, as asserted.

Theorem 6.3.3 guarantees that no matter which basis of V is chosen it contains the same number of vectors as any other basis. Hence there is no ambiguity about the following definition.

Definition 6.6 Dimension of a Vector Space

If $\{e_1, e_2, ..., e_n\}$ is a basis of the nonzero vector space *V*, the number *n* of vectors in the basis is called the **dimension** of *V*, and we write

 $\dim V = n$

The zero vector space $\{0\}$ is defined to have dimension 0:

 $\dim \{\boldsymbol{0}\} = 0$

In our discussion to this point we have always assumed that a basis is nonempty and hence that the dimension of the space is at least 1. However, the zero space $\{0\}$ has *no* basis (by Example 6.3.6) so our insistence that dim $\{0\} = 0$ amounts to saying that the *empty* set of vectors is a basis of $\{0\}$. Thus the statement that "the dimension of a vector space is the number of vectors in any basis" holds even for the zero space.

We saw in Example 5.2.9 that dim $(\mathbb{R}^n) = n$ and, if \mathbf{e}_j denotes column *j* of I_n , that $\{\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n\}$ is a basis (called the standard basis). In Example 6.3.7 below, similar considerations apply to the space \mathbf{M}_{mn} of all $m \times n$ matrices; the verifications are left to the reader.

Example 6.3.7

The space \mathbf{M}_{mn} has dimension mn, and one basis consists of all $m \times n$ matrices with exactly one entry equal to 1 and all other entries equal to 0. We call this the **standard basis** of \mathbf{M}_{mn} .

Example 6.3.8

Show that dim $\mathbf{P}_n = n + 1$ and that $\{1, x, x^2, \dots, x^n\}$ is a basis, called the **standard basis** of \mathbf{P}_n .

Solution. Each polynomial $p(x) = a_0 + a_1x + \dots + a_nx^n$ in \mathbf{P}_n is clearly a linear combination of 1, x, \dots, x^n , so $\mathbf{P}_n = \text{span} \{1, x, \dots, x^n\}$. However, if a linear combination of these vectors vanishes, $a_0 1 + a_1x + \dots + a_nx^n = 0$, then $a_0 = a_1 = \dots = a_n = 0$ because x is an indeterminate. So $\{1, x, \dots, x^n\}$ is linearly independent and hence is a basis containing n + 1 vectors. Thus, $\dim(\mathbf{P}_n) = n + 1$.

Example 6.3.9

If $\mathbf{v} \neq \mathbf{0}$ is any nonzero vector in a vector space *V*, show that span $\{\mathbf{v}\} = \mathbb{R}\mathbf{v}$ has dimension 1.

Solution. $\{v\}$ clearly spans $\mathbb{R}v$, and it is linearly independent by Example 6.3.6. Hence $\{v\}$ is a basis of $\mathbb{R}v$, and so dim $\mathbb{R}v = 1$.

Example 6.3.10

Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ and consider the subspace

$$U = \{X \text{ in } \mathbf{M}_{22} \mid AX = XA\}$$

of \mathbf{M}_{22} . Show that dim U = 2 and find a basis of U.

Solution. It was shown in Example 6.2.3 that *U* is a subspace for any choice of the matrix *A*. In the present case, if $X = \begin{bmatrix} x & y \\ z & w \end{bmatrix}$ is in *U*, the condition AX = XA gives z = 0 and x = y + w. Hence each matrix *X* in *U* can be written

$$X = \begin{bmatrix} y+w & y \\ 0 & w \end{bmatrix} = y \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} + w \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

so $U = \operatorname{span} B$ where $B = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\}$. Moreover, the set *B* is linearly independent (verify this), so it is a basis of *U* and dim U = 2.

Example 6.3.11

Show that the set V of all symmetric 2×2 matrices is a vector space, and find the dimension of V.

Solution. A matrix A is symmetric if $A^T = A$. If A and B lie in V, then

$$(A+B)^T = A^T + B^T = A + B$$
 and $(kA)^T = kA^T = kA$

using Theorem 2.1.2. Hence A + B and kA are also symmetric. As the 2 × 2 zero matrix is also in

V, this shows that *V* is a vector space (being a subspace of \mathbf{M}_{22}). Now a matrix *A* is symmetric when entries directly across the main diagonal are equal, so each 2×2 symmetric matrix has the form $\begin{bmatrix} a & c \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix}$

$$\begin{bmatrix} a & c \\ c & b \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} + c \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Hence the set $B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\}$ spans *V*, and the reader can verify that *B* is linearly independent. Thus *B* is a basis of *V*, so dim *V* = 3.

It is frequently convenient to alter a basis by multiplying each basis vector by a nonzero scalar. The next example shows that this always produces another basis. The proof is left as Exercise 6.3.22.

Example 6.3.12

Let $B = {\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n}$ be nonzero vectors in a vector space V. Given nonzero scalars $a_1, a_2, ..., a_n$, write $D = {a_1\mathbf{v}_1, a_2\mathbf{v}_2, ..., a_n\mathbf{v}_n}$. If B is independent or spans V, the same is true of D. In particular, if B is a basis of V, so also is D.

Exercises for 6.3

Exercise 6.3.1 Show that each of the following sets of vectors is independent.

a.
$$\{1+x, 1-x, x+x^2\}$$
 in \mathbf{P}_2
b. $\{x^2, x+1, 1-x-x^2\}$ in \mathbf{P}_2

$$\begin{cases} \begin{bmatrix} 1 & 1 \\ 0 & 0 \\ in \mathbf{M}_{22} \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \end{cases}$$

$$\begin{cases} d. \\ \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ in \mathbf{M}_{22} \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \end{cases}$$

Exercise 6.3.2 Which of the following subsets of *V* are independent?

a.
$$V = \mathbf{P}_2$$
; $\{x^2 + 1, x + 1, x\}$
b. $V = \mathbf{P}_2$; $\{x^2 - x + 3, 2x^2 + x + 5, x^2 + 5x + 1\}$

c.
$$V = \mathbf{M}_{22}$$
; $\left\{ \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\}$
d. $V = \mathbf{M}_{22}$;
 $\left\{ \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \right\}$
e. $V = \mathbf{F}[1, 2]; \left\{ \frac{1}{x}, \frac{1}{x^2}, \frac{1}{x^3} \right\}$
f. $V = \mathbf{F}[0, 1]; \left\{ \frac{1}{x^2 + x - 6}, \frac{1}{x^2 - 5x + 6}, \frac{1}{x^2 - 9} \right\}$

Exercise 6.3.3 Which of the following are independent in $\mathbf{F}[0, 2\pi]$?

Exercise 6.3.4 Find all values of *a* such that the following are independent in \mathbb{R}^3 .

a.
$$\{(1, -1, 0), (a, 1, 0), (0, 2, 3)\}$$

b. $\{(2, a, 1), (1, 0, 1), (0, 1, 3)\}$

Exercise 6.3.5 Show that the following are bases of the space *V* indicated.

a. {(1, 1, 0), (1, 0, 1), (0, 1, 1)};
$$V = \mathbb{R}^3$$

b. {(-1, 1, 1), (1, -1, 1), (1, 1, -1)}; $V = \mathbb{R}^3$
c. { $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ };
 $V = \mathbf{M}_{22}$
d. {1+x, x+x², x²+x³, x³}; $V = \mathbf{P}_3$

Exercise 6.3.6 Exhibit a basis and calculate the dimension of each of the following subspaces of P_2 .

- a. $\{a(1+x) + b(x+x^2) \mid a \text{ and } b \text{ in } \mathbb{R}\}\$
- b. $\{a+b(x+x^2) \mid a \text{ and } b \text{ in } \mathbb{R}\}\$
- c. $\{p(x) \mid p(1) = 0\}$

d.
$$\{p(x) \mid p(x) = p(-x)\}$$

Exercise 6.3.7 Exhibit a basis and calculate the dimension of each of the following subspaces of M_{22} .

a.
$$\{A \mid A^T = -A\}$$

b. $\{A \mid A \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} A$
c. $\{A \mid A \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \}$
d. $\{A \mid A \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix} A$

Exercise 6.3.8 Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ and define $U = \{X \mid X \in \mathbf{M}_{22} \text{ and } AX = X\}.$

- a. Find a basis of U containing A.
- b. Find a basis of U not containing A.

Exercise 6.3.9 Show that the set \mathbb{C} of all complex numbers is a vector space with the usual operations, and find its dimension.

Exercise 6.3.10

- a. Let V denote the set of all 2×2 matrices with equal column sums. Show that V is a subspace of M_{22} , and compute dim V.
- b. Repeat part (a) for 3×3 matrices.
- c. Repeat part (a) for $n \times n$ matrices.

Exercise 6.3.11

- a. Let $V = \{(x^2 + x + 1)p(x) | p(x) \text{ in } \mathbf{P}_2\}$. Show that V is a subspace of \mathbf{P}_4 and find dim V. [*Hint*: If f(x)g(x) = 0 in \mathbf{P} , then f(x) = 0 or g(x) = 0.]
- b. Repeat with $V = \{(x^2 x)p(x) \mid p(x) \text{ in } \mathbf{P}_3\}$, a subset of \mathbf{P}_5 .
- c. Generalize.

Exercise 6.3.12 In each case, either prove the assertion or give an example showing that it is false.

- a. Every set of four nonzero polynomials in \mathbf{P}_3 is a basis.
- b. \mathbf{P}_2 has a basis of polynomials f(x) such that f(0) = 0.
- c. \mathbf{P}_2 has a basis of polynomials f(x) such that f(0) = 1.
- d. Every basis of \mathbf{M}_{22} contains a noninvertible matrix.
- e. No independent subset of \mathbf{M}_{22} contains a matrix A with $A^2 = 0$.
- f. If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is independent then, $a\mathbf{u} + b\mathbf{v} + c\mathbf{w} = \mathbf{0}$ for some *a*, *b*, *c*.
- g. {**u**, **v**, **w**} is independent if $a\mathbf{u} + b\mathbf{v} + c\mathbf{w} = \mathbf{0}$ for some *a*, *b*, *c*.
- h. If $\{\mathbf{u}, \mathbf{v}\}$ is independent, so is $\{\mathbf{u}, \mathbf{u} + \mathbf{v}\}$.
- i. If $\{\mathbf{u}, \mathbf{v}\}$ is independent, so is $\{\mathbf{u}, \mathbf{v}, \mathbf{u} + \mathbf{v}\}$.
- j. If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is independent, so is $\{\mathbf{u}, \mathbf{v}\}$.
- k. If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is independent, so is $\{\mathbf{u} + \mathbf{w}, \mathbf{v} + \mathbf{w}\}$.
- 1. If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is independent, so is $\{\mathbf{u} + \mathbf{v} + \mathbf{w}\}$.

- m. If $\mathbf{u} \neq \mathbf{0}$ and $\mathbf{v} \neq \mathbf{0}$ then $\{\mathbf{u}, \mathbf{v}\}$ is dependent if and only if one is a scalar multiple of the other.
- n. If dim V = n, then no set of more than n vectors can be independent.
- o. If dim V = n, then no set of fewer than *n* vectors can span *V*.

Exercise 6.3.13 Let $A \neq 0$ and $B \neq 0$ be $n \times n$ matrices, and assume that *A* is symmetric and *B* is skew-symmetric (that is, $B^T = -B$). Show that $\{A, B\}$ is independent.

Exercise 6.3.14 Show that every set of vectors containing a dependent set is again dependent.

Exercise 6.3.15 Show that every nonempty subset of an independent set of vectors is again independent.

Exercise 6.3.16 Let *f* and *g* be functions on [a, b], and assume that f(a) = 1 = g(b) and f(b) = 0 = g(a). Show that $\{f, g\}$ is independent in $\mathbf{F}[a, b]$.

Exercise 6.3.17 Let $\{A_1, A_2, ..., A_k\}$ be independent in \mathbf{M}_{mn} , and suppose that U and V are invertible matrices of size $m \times m$ and $n \times n$, respectively. Show that $\{UA_1V, UA_2V, ..., UA_kV\}$ is independent.

Exercise 6.3.18 Show that $\{v, w\}$ is independent if and only if neither v nor w is a scalar multiple of the other.

Exercise 6.3.19 Assume that $\{\mathbf{u}, \mathbf{v}\}$ is independent in a vector space *V*. Write $\mathbf{u}' = a\mathbf{u} + b\mathbf{v}$ and $\mathbf{v}' = c\mathbf{u} + d\mathbf{v}$, where *a*, *b*, *c*, and *d* are numbers. Show that $\{\mathbf{u}', \mathbf{v}'\}$ is independent if and only if the matrix $\begin{bmatrix} a & c \\ b & d \end{bmatrix}$ is invertible. [*Hint*: Theorem 2.4.5.]

Exercise 6.3.20 If $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is independent and **w** is not in span $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$, show that:

- a. { $\mathbf{w}, \mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ } is independent.
- b. { $\mathbf{v}_1 + \mathbf{w}, \mathbf{v}_2 + \mathbf{w}, \dots, \mathbf{v}_k + \mathbf{w}$ } is independent.

Exercise 6.3.21 If $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is independent, show that $\{\mathbf{v}_1, \mathbf{v}_1 + \mathbf{v}_2, \dots, \mathbf{v}_1 + \mathbf{v}_2 + \dots + \mathbf{v}_k\}$ is also independent.

Exercise 6.3.22 Prove Example 6.3.12.

Exercise 6.3.23 Let $\{u, v, w, z\}$ be independent. Which of the following are dependent?

a.
$$\{\mathbf{u} - \mathbf{v}, \mathbf{v} - \mathbf{w}, \mathbf{w} - \mathbf{u}\}$$

- b. $\{u+v, v+w, w+u\}$ c. $\{u-v, v-w, w-z, z-u\}$
- d. $\{u+v, v+w, w+z, z+u\}$

Exercise 6.3.24 Let *U* and *W* be subspaces of *V* with bases $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ and $\{\mathbf{w}_1, \mathbf{w}_2\}$ respectively. If *U* and *W* have only the zero vector in common, show that $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{w}_1, \mathbf{w}_2\}$ is independent.

Exercise 6.3.25 Let $\{p, q\}$ be independent polynomials. Show that $\{p, q, pq\}$ is independent if and only if deg $p \ge 1$ and deg $q \ge 1$.

Exercise 6.3.26 If z is a complex number, show that $\{z, z^2\}$ is independent if and only if z is not real.

Exercise 6.3.27 Let $B = \{A_1, A_2, \dots, A_n\} \subseteq \mathbf{M}_{mn}$, and write $B' = \{A_1^T, A_2^T, \dots, A_n^T\} \subseteq \mathbf{M}_{nm}$. Show that:

- a. *B* is independent if and only if B' is independent.
- b. *B* spans \mathbf{M}_{mn} if and only if *B'* spans \mathbf{M}_{nm} .

Exercise 6.3.28 If $V = \mathbf{F}[a, b]$ as in Example 6.1.7, show that the set of constant functions is a subspace of dimension 1 (*f* is **constant** if there is a number *c* such that f(x) = c for all *x*).

Exercise 6.3.29

- a. If U is an invertible $n \times n$ matrix and $\{A_1, A_2, ..., A_{mn}\}$ is a basis of \mathbf{M}_{mn} , show that $\{A_1U, A_2U, ..., A_{mn}U\}$ is also a basis.
- b. Show that part (a) fails if *U* is not invertible. [*Hint*: Theorem 2.4.5.]

Exercise 6.3.30 Show that $\{(a, b), (a_1, b_1)\}$ is a basis of \mathbb{R}^2 if and only if $\{a+bx, a_1+b_1x\}$ is a basis of \mathbb{P}_1 .

Exercise 6.3.31 Find the dimension of the subspace span $\{1, \sin^2 \theta, \cos 2\theta\}$ of $\mathbf{F}[0, 2\pi]$.

Exercise 6.3.32 Show that $\mathbf{F}[0, 1]$ is not finite dimensional.

Exercise 6.3.33 If *U* and *W* are subspaces of *V*, define their intersection $U \cap W$ as follows:

 $U \cap W = \{\mathbf{v} \mid \mathbf{v} \text{ is in both } U \text{ and } W\}$

a. Show that $U \cap W$ is a subspace contained in U and W.

- independent for any nonzero vectors **u** in U and **w** from the set $\{1, 2, ..., n\}$ to \mathbb{R} . in W.
- c. If B and D are bases of U and W, and if $U \cap W =$ $\{\mathbf{0}\}$, show that $B \cup D = \{\mathbf{v} \mid \mathbf{v} \text{ is in } B \text{ or } D\}$ is independent.

Exercise 6.3.34 If U and W are vector spaces, let $V = \{ (\mathbf{u}, \mathbf{w}) \mid \mathbf{u} \text{ in } U \text{ and } \mathbf{w} \text{ in } W \}.$

- a. Show that V is a vector space if $(\mathbf{u}, \mathbf{w}) +$ $({\bf u}_1, {\bf w}_1) = ({\bf u} + {\bf u}_1, {\bf w} + {\bf w}_1)$ and $a({\bf u}, {\bf w}) =$ (*a***u**, *a***w**).
- b. If dim U = m and dim W = n, show that $\dim V = m + n.$
- c. If V_1, \ldots, V_m are vector spaces, let

$$V = V_1 \times \cdots \times V_m$$

= {(**v**₁, ..., **v**_m) | **v**_i \in V_i for each i}

denote the space of *n*-tuples from the V_i with componentwise operations (see Exercise 6.1.17). If dim $V_i = n_i$ for each *i*, show that dim $V = n_1 + i$ $\cdots + n_m$.

b. Show that $U \cap W = \{0\}$ if and only if $\{u, w\}$ is **Exercise 6.3.35** Let \mathbf{D}_n denote the set of all functions f

- a. Show that \mathbf{D}_n is a vector space with pointwise addition and scalar multiplication.
- b. Show that $\{S_1, S_2, \ldots, S_n\}$ is a basis of \mathbf{D}_n where, for each k = 1, 2, ..., n, the function S_k is defined by $S_k(k) = 1$, whereas $S_k(j) = 0$ if $j \neq k$.

Exercise 6.3.36 A polynomial p(x) is called even if p(-x) = p(x) and odd if p(-x) = -p(x). Let E_n and O_n denote the sets of even and odd polynomials in \mathbf{P}_n .

- a. Show that E_n is a subspace of \mathbf{P}_n and find dim E_n .
- b. Show that O_n is a subspace of \mathbf{P}_n and find dim O_n .

Exercise 6.3.37 Let $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ be independent in a vector space V, and let A be an $n \times n$ matrix. Define ${\bf u}_1, \, \ldots, \, {\bf u}_n \, {\rm by}$

$$\left[\begin{array}{c} \mathbf{u}_1\\ \vdots\\ \mathbf{u}_n \end{array}\right] = A \left[\begin{array}{c} \mathbf{v}_1\\ \vdots\\ \mathbf{v}_n \end{array}\right]$$

(See Exercise 6.1.18.) Show that $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ is independent if and only if A is invertible.

6.4 Finite Dimensional Spaces

Up to this point, we have had no guarantee that an arbitrary vector space has a basis—and hence no guarantee that one can speak at all of the dimension of V. However, Theorem 6.4.1 will show that any space that is spanned by a finite set of vectors has a (finite) basis: The proof requires the following basic lemma, of interest in itself, that gives a way to enlarge a given independent set of vectors.

Lemma 6.4.1: Independent Lemma

Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be an independent set of vectors in a vector space V. If $\mathbf{u} \in V$ but⁵ $\mathbf{u} \notin \text{span} \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$, then $\{\mathbf{u}, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is also independent.

<u>Proof.</u> Let $t\mathbf{u} + t_1\mathbf{v}_1 + t_2\mathbf{v}_2 + \cdots + t_k\mathbf{v}_k = \mathbf{0}$; we must show that all the coefficients are zero. First, t = 0because, otherwise, $\mathbf{u} = -\frac{t_1}{t}\mathbf{v}_1 - \frac{t_2}{t}\mathbf{v}_2 - \cdots - \frac{t_k}{t}\mathbf{v}_k$ is in span $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k\}$, contrary to our assumption.

⁵If X is a set, we write $a \in X$ to indicate that a is an element of the set X. If a is not an element of X, we write $a \notin X$.